Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 3» с. Астраханка Ханкайского муниципального округа

Согласовано и разрешено к использованию Директор МБОУ СОШ № 3

А.Ф. Каменек

Приказ № 127 от 26.08.2021 г

РАБОЧАЯ ПРОГРАММА

По курсу
«Химия»

Для 11 класса

на 2021– 2022 учебный год
(с использованием оборудования «Точка роста»)

учитель:

Рыжих О.Ф.

с. Астраханка 2021 г.

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа \mathfrak{N}_{2} 3» с. Астраханка Ханкайского муниципального округа

Утверждаю: директор МБОУ СОШ № 3
А.Ф. Каменек
Приказ № 127 от 26.08.2021 г

РАБОЧАЯ ПРОГРАММА

по курсу «Химия» для 11 класса на 2021– 2022 учебный год

(реализуемая с использованием средств обучения и воспитания центра образования

естественно-научной направленности «Точка роста»)

учитель:

Рыжих О.Ф.

с. Астраханка 2021 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Федеральный государственный образовательный стандарт общего образования, а также основные идеи и положения Программы развития и формирования универсальных учебных действий для среднего общего образования составляют основу предлагаемой рабочей программы. Эта программа логически продолжает программы для начального общего и основного общего образования в области развития всех основных видов деятельности обучаемых. Она составлена с учётом особенностей, которые обусловлены в первую очередь предметным содержанием и психологическими возрастными особенностями обучающихся.

Познавательная деятельность при изучении курса химии на базовом уровне играет ведущую роль в развитии основных видов учебной деятельности старшеклассников. Они овладеют методами научного познания, научатся полно и точно выражать свои мысли, характеризовать, объяснять, классифицировать химические объекты, работать в группе, аргументировать свою точку зрения, находить, использовать различные источники информации и представлять в устной и письменной речи результаты анализа этой информации.

Одна из задач обучения в средней школе — определение дальнейшей образовательной траектории и ответственный выбор жизненного и профессионального пути. Для решения этой задачи старшеклассники должны использовать приобретённый на уроках химии опыт деятельности в профессиональной сфере и любой жизненной ситуации.

Согласно образовательному стандарту, главные цели среднего общего образования состоят:

- 1) в приобретении знаний, умений и способов деятельности, содействующих формированию целостного представления о мире;
- 2) в развитии опыта разнообразной деятельности, самопознания и самоопределения;
- 3) в осознанном выборе индивидуальной образовательной траектории и профессиональной деятельности.

Большой вклад в достижение этих целей среднего общего образования вносит изучение химии, которое призвано обеспечить:

- 1) формирование естественно-научной картины мира, в которой система химических знаний является её важнейшим компонентом;
- 2) развитие интеллектуального и нравственного потенциала старшеклассников, формирование у них экологически грамотного поведения в учебной и профессиональной деятельности, а также в быту;
- 3) осознание старшеклассниками необходимости развития химии и химической промышленности как производительной силы общества;
- 4) понимание необходимости безопасного обращения с веществами и материалами, используемыми в профессиональной деятельности и повседневной жизни.

Целями изучения химии в средней школе являются:

- 1) понимание значимости химических знаний для каждого члена социума; умение оценивать различные факты и явления, связанные с химическими объектами и процессами, на основе объективных критериев и определённой системы ценностей, формулировать и обосновывать собственное мнение;
- 2) понимание роли химии в современной естественно-научной картине мира и использование химических знаний для объяснения объектов и процессов окружающей действительности природной, социальной, культурной, технической среды;
- 3) формирование у старшеклассников при изучении химии опыта познания и самопознания с помощью ключевых компетентностей (клю-

чевых навыков), которые имеют универсальное значение для различных видов деятельности, — поиска, анализа и обработки информации, изготовления информационного продукта и его презентации, принятия решений, коммуникативных навыков, безопасного обращения с веществами и материалами в повседневной жизни и профессиональной деятельности.

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ПРЕПОДАВАНИЯ КУРСА ХИМИИ

Содержание курса реализуется из расчёта 1 ч в неделю. Этот лимит времени и обусловливает ряд методических особенностей преподавания курса.

Изучение химии на базовом уровне априори не готовит старшеклассников к сдаче ЕГЭ по химии. Поэтому в построении курса использован антропоцентрический подход, при котором обучение предмету происходит на основе учёта интересов, склонностей и особенностей старше-классников вместо хемиоцентрического подхода, при котором обучение химии строится на основе принципов и методов познания самой химии

Низкая мотивация изучения химии большинством учащихся гуманитарных, физико-математических классов и школ обусловлена её статусом как непрофильной дисциплины. С целью повышения интереса к химии у таких старшеклассников в учебниках предусмотрено усиление прикладного характера содержания и познавательной деятельности учащихся, т. е. делается акцент на связи химии с повседневной жизнью человека. Так, в курсе органической химии на базовом уровне предполагается изучение раздела «Органическая химия и общество», который знакомит старшеклассников с основами биотехнологии и химии полимеров. А в курсе общей химии в разделе «Химия и современное общество» рассматривается тема «Химическая грамотность как компонент общей культуры человека», формируется представление о необходимости следования инструкциям к лекарственным препаратам и бытовым приборам. С целью правильного ухода за трикотажными изделиями (чисткой, стиркой, сушкой, утюжкой) формируется умение читать их этикетки.

Учебный материал курса химии на базовом уровне изложен не в сухом дидактическом формате, а в формате собеседования с обучающимся на основе реализации межпредметных связей с мировой художественной культурой, литературой, историей.

Усиление гуманитаризации в обучении химии в классах и школах гуманитарного профиля проводится с помощью методов, приёмов и средств, применяемых при изучении гуманитарных дисциплин. Например, хороший результат при изучении как иностранного языка, так и химии даёт использование химического материала на иностранном языке учащимися школ и классов с углублённым изучением соответствующего иностранного языка. Ещё больший эффект при изучении обоих предметов будет достигнут, если к подбору химического материала на иностранном языке привлекаются и сами учащиеся, которые находят и представляют информацию о развитии химической науки и промышленности в странах изучаемого языка и о роли учёных-химиков этих стран (задания по поиску такой информации приводятся в рубриках «Используйте дополнительную информацию» и «Выразите своё мнение»). Выполнение подобных заданий позволяет также развивать информационно-коммуникативную компетентность старшеклассников.

В классах физико-математического профиля темы, связанные с физикой, изучаются на основе активных форм обучения (бесед, диспутов, уро-

ков-конференций), что позволяет значительно увеличить долю самостоятельной работы учащихся. Например, подобный подход целесообразно применять при изучении строения атома и вещества, некоторых аспектов физической и коллоидной химии, газовых законов. Такой интегративный подход к обучению химии на базовом уровне позволяет формировать целостную естественно-научную картину мира.

Химический эксперимент и расчётные задачи по формулам и уравнениям в курсе базового уровня из-за небольшого лимита времени используются несколько иначе, чем в основной школе и при изучении химии на углублённом уровне. Так, увеличен удельный вес демонстрационного эксперимента и уменьшен удельный вес лабораторного ученического эксперимента. В связи с этим при выполнении демонстрационного эксперимента учителю рекомендуется привлекать учащихся в качестве ассистентов. Кроме этого, с целью экономии времени и усиления наглядности на уроках химии предлагается использовать видеофрагменты и видеоматериалы, а также коллекции, подготовленные к каждому уроку химии на основе рисунков-коллажей из учебников.

Чтобы реализовать взаимосвязь качественной и количественной сторон изучаемых химических объектов (веществ и реакций), необходимо также увеличить удельный вес самостоятельной работы учащихся. С этой целью расчётные задачи, приведённые в конце каждого параграфа, оцениваются и комментируются учителем на протяжении 3—5 мин в начале каждого урока.

Раскрытие связи изучаемого материала с будущей профессиональной деятельностью выпускника средней школы способствует усиле- нию мотивации учащихся к изучению непрофильной дисциплины. Наибольший эффект наблюдается при самостоятельной работе старшеклассников по раскрытию этой связи, например при выполнении заданий с общей тематикой «Подготовьте сообщение о том, как связаны сведения конкретной темы с выбранным вами вузом или с будущей профессиональной деятельностью».

Большую роль в интеграции знаний старшеклассников по химии и другим предметам играют философские категории и законы, например законы перехода количественных отношений в качественные, единства и борьбы противоположностей. Например, в ходе дискуссии о сути периодического закона учащиеся приходят к выводу о причинно-следственной связи между изменением свойств элементов и образуемых ими веществ и величиной зарядов их атомных ядер или о двойственном положении водорода в периодической системе.

Один час в неделю, отведённый на изучение курса, предполагает широкое использование лекционно-семинарской формы проведения учебных занятий. Это не только позволяет старшеклассникам эффективно усваивать содержание курса, но и готовит их к продолжению образования в высшей школе, где такая форма преобладает.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Особенности содержания и методического построения курса химии сформированы на основе ФГОС СОО.

- 1. Содержание курса выстроено логично и доступно в соответствии с системно-деятельностным подходом на основе иерархии учебных проблем.
- 2. В 10 классе старшеклассники знакомятся с богатым миром органических веществ, устанавливая взаимосвязь химического строения этих веществ с их свойствами и применением.
- 3. Содержание курса общей химии в 11 классе способствует формированию единой химической картины мира у выпускников средней школы путём рассмотрения общих для неорганической и органической химии понятий, законов и теорий.
- 4. Изучение курса проводится на основе сочетания теории и практики проблемного обучения и подачи материала в логике научного познания.
- 5. Теоретические положения курса широко подкреплены демонстрационными химическими экспериментами, лабораторными опытами и практическими работами.
- 6. Реализуется интеграция содержания курса с предметами не только естественно-научного, но и гуманитарного цикла.
- 7. Достижению предметных, метапредметных и личностных результатов способствует система заданий в формате рефлексии: проверьте свои знания, примените их, используйте дополнительную информацию, выразите своё мнение.
- 8. Раскрывается роль российских учёных в становлении мировой химической науки, что способствует воспитанию патриотизма и национальной самоидентификации.
- 9. Курс реализует связь учебной дисциплины с жизнью, что способствует усилению мотивации учащихся к изучению непрофильного предмета через раскрытие связи изучаемого материала с будущей образовательной траекторией и профессиональной деятельностью.
- 10. В курсе представлены современные направления развития химической науки и технологии.
- 11. В курсе нашли отражение следующие содержательные линии:
- «Вещество» знания о составе, строении, свойствах (физических, химических и биологических), нахождении в природе и получении важнейших химических веществ;

- «Химическая реакция» знания о процессах, в которых проявляются химические свойства веществ, условиях их протекания и способах управления ими;
- «Применение веществ» знание взаимосвязи между свойствами веществ, часто используемых в быту, промышленности, сельском хозяйстве, здравоохранении и на транспорте, и их применением;
- «Язык химии» система знаний о важнейших понятиях химии и химической номенклатуре неорганических и органических веществ

(ИЮПАК и тривиальной); владение химической символикой и её отражением на письме — химическими знаками (символами) при составлении формул и уравнений, а также правилами перевода информации с родного языка на язык химии и обратно.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Курс химии в средней школе предусматривается Федеральным государственным образовательным стандартом как составная часть предметной области «Естественно-научные предметы». Обучающиеся могут выбрать для изучения интегрированный курс естествознания или химию как на базовом, так и на углублённом уровне.

Рабочая программа по химии для среднего общего образования на базовом уровне составлена из расчёта 1 ч в неделю (70 ч за два года обучения).

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ХИМИИ

Обучение химии в средней школе на базовом уровне по данному курсу способствует достижению обучающимися следующих личностных результатов:

- 1) чувство гордости за российскую химическую науку и осознание российской гражданской идентичности в ценностно-ориентационной сфере;
- 2) осознание необходимости своей познавательной деятельности и умение управлять ею, готовность и способность к самообразованию на протяжении всей жизни; понимание важности непрерывного образования как фактора успешной профессиональной и общественной деятельности в познавательной (когнитивной, интеллектуальной) сфере;
- 3) готовность к осознанному выбору дальнейшей образовательной траектории или сферы профессиональной деятельности в трудовой сфере;
- 4) неприятие вредных привычек (курения, употребления алкоголя и наркотиков) на основе знаний о токсическом и наркотическом дей-

ствии веществ — в сфере здоровьесбережения и безопасного образа жизни.

Метапредметными результатами освоения выпускниками средней школы курса химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системноинформационный анализ, наблюдение, измерение, проведение эксперимента, моделирование, исследовательская деятельность) для изучения различных сторон окружающей действительности;
- 2) владение основными интеллектуальными операциями (формулировка гипотез, анализ и синтез, сравнение и систематизация, обобщение и конкретизация, выявление причинно-следственных связей и поиск аналогов);
- 3) познание объектов окружающего мира от общего через особенное к единичному;
- 4) умение выдвигать идеи и определять средства, необходимые для их реализации;
- 5) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 6) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;
- 7) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 8) готовность и способность к самостоятельной информационно- познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 10) владение языковыми средствами, в том числе и языком химии, умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

Предметными результатами изучения химии на базовом уровне на ступени среднего общего образования являются следующие результаты:

- I. В познавательной сфере:
- 1) знание (понимание) терминов, основных законов и важнейших теорий курса органической и общей химии;
- 2) умение наблюдать, описывать, фиксировать результаты и делать выводы на основе демонстрационных и самостоятельно проведённых экспериментов, используя для этого родной (русский или иной) язык и язык химии;
- 3) умение классифицировать химические элементы, простые вещества, неорганические и органические соединения, химические процессы;
- 4) умение характеризовать общие свойства, получение и применение изученных классов неорганических и органических веществ и их важнейших представителей;
- 5) умение описывать конкретные химические реакции, условия их проведения и управления химическими процессами;
- 6) умение самостоятельно проводить химический эксперимент и наблюдать демонстрационный эксперимент, фиксировать результаты и делать выводы и заключения по результатам;
- 7) умение прогнозировать свойства неизученных веществ по аналогии со свойствами изученных на основе знания химических закономерностей;
- 8) умение определять источники химической информации, получать её, проводить анализ, изготавливать информационный продукт и представлять его;
- 9) умение пользоваться обязательными справочными материалами (периодической системой химических элементов Д. И. Менделеева, таблицей растворимости, электрохимическим рядом напряжений металлов, рядом электроотрицательности) для характеристики строения, состава и свойств атомов химических элементов I—IV периодов и образованных ими простых и сложных веществ;
- 10) умение устанавливать зависимость свойств и применения важнейших органических соединений от их химического строения, в том числе и обусловленных характером этого строения (предельным или непредельным) и наличием функциональных групп;
- 11) умение моделировать молекулы неорганических и органических веществ;

- 12) понимание химической картины мира как неотъемлемой части целостной научной картины мира.
- II. В ценностно-ориентационной сфере: формирование собственной позиции при оценке последствий для окружающей среды деятельности человека, связанной с производством и переработкой химических продуктов.
- III. В трудовой сфере: проведение химического эксперимента; развитие навыков учебной, проектно-исследовательской и творческой деятельности при выполнении индивидуального проекта по химии.
- IV. В сфере здорового образа жизни: соблюдение правил безопасного обращения с веществами, материалами; оказание первой помощи при отравлениях, ожогах и травмах, полученных в результате нарушения правил техники безопасности при работе с веществами и лабораторным оборудованием.

ОСОБЕННОСТИ СОДЕРЖАНИЯ КУРСА ХИМИИ БАЗОВОГО УРОВНЯ

На освоение курса химии на базовом уровне отведено жёстко лимитированное учебное время.

Содержание курса характеризуется целостностью и системностью.

Первая часть курса (10 класс) посвящена органическим соединениям, а вторая (11 класс) — общей химии.

Структурирование курса органической химии определяется идеями

теории развивающего обучения Д. Б. Эльконина и В. В. Давыдова и ставит целью развитие учащихся непрофильных по отношению к химии классов средствами учебной дисциплины. В связи с этим вначале рассматриваются краткие теоретические сведения о строении органических соединений, раскрываются причины их многообразия. Далее рассматриваются основные классы углеводородов (алканов, алкенов, диенов, алки- нов, аренов) и их природные источники (природный газ, нефть и каменный уголь). Это позволяет закрепить основные положения теории химического строения органических соединений.

Представления о зависимости свойств органических соединений от их строения развиваются при рассмотрении классов кислородсодержащих соединений (спиртов, альдегидов, карбоновых кислот, сложных эфиров, жиров и углеводов) и азотсодержащих органических соединений (аминов, аминокислот, белков и нуклеиновых кислот).

Роль органической химии в жизни современного общества раскрыта в заключительной главе курса «Органическая химия и общество». В ней обучающиеся знакомятся с такими важными в практическом и биологическом отношении веществами и материалами, как пластмассы и волокна, а также с достижениями биотехнологии.

Идеи теории развивающего обучения положены и в основу курса общей химии. У старшеклассников формируется целостное представление о

химической науке и химическом производстве, а также о единой естественно-научной картине мира, неотъемлемой частью которой является химическая картина мира.

В курсе общей химии вначале учащиеся знакомятся с последними достижениями в области изучения атома, узнают о современных методах познания строения атома, углубляют и расширяют знания, полученные в курсе основной школы, о строении атома и вещества на основе периодического закона и периодической системы Д. И. Менделеева. Далее рассматривается классификация химических реакций в органической и неорганической химии, общие свойства металлов и неметаллов, а также классов органических и неорганических соединений (кислот, оснований, амфотерных соединений) в свете теории электролитической диссоциации и протонной теории. Завершает курс знакомство старшеклассников с перспективами развития химической науки и химического производства, с проблемой охраны окружающей среды от химического загрязнения и путями её решения.

11 КЛАСС

Строение веществ

Основные сведения о строении атома. Строение атома: состав ядра (нуклоны) и электронная оболочка. Понятие об изотопах. Понятие о химическом элементе как совокупности атомов с одинаковым зарядом ядра.

Периодическая система химических элементов и учение о строении атома. Физический смысл принятой в таблице Д. И. Менделеева символики: порядкового номера элемента, номера периода и номера группы. Понятие о валентных электронах. Отображение строения элек- тронных оболочек атомов химических элементов с помощью электронных и электронно-графических формул. Закономерные изменения свойств элементов в периодах и группах периодической системы как следствие их электронного строения. Электронные семейства химических элементов.

Становление и развитие периодического закона и теории химического строения. Предпосылки открытия периодического закона и теории химического строения органических соединений. Роль личности в истории химии. Значение практики в становлении и развитии химической теории.

Ионная химическая связь и ионная кристаллическая решётка. Катионы и анионы. Понятие об ионной химической связи. Физические свойства веществ, имеющих ионную кристаллическую решётку.

Ковалентная химическая связь. Понятие о ковалентной связи. Электроотрицательность. Неполярная и полярная ковалентная связь. Кратность ковалентной связи. Механизмы образования ковалентных связей: обменный и донорно-акцепторный. Полярность молекулы как следствие полярности связи и геометрии молекулы. Физические свойства веществ, имеющих атомную или молекулярную кристаллическую решётку. Металлическая химическая связь. Понятие о металлической связи и металлической кристаллической решётке. Физические свойства металлов, обусловленные их кристаллическим строением. Применение металлов. Чёрные и цветные металлы. Сплавы.

Водородная химическая связь. Межмолекулярная и внутримолекулярная водородная связь. Значение водородных связей в природе.

Полимеры. Получение полимеров реакциями полимеризации и поликонденсации. Важнейшие представители пластмасс и волокон, их получение, свойства и применение. Понятие о неорганических полимерах и их представители.

Дисперсные системы. Понятие о дисперсной фазе и дисперсионной среде. Агрегатное состояние и размер частиц фазы как основа для классификации дисперсных систем. Грубодисперсные системы — эмульсии, суспензии и аэрозоли, их представители. Тонкодисперсные системы — золи и гели, их представители. Понятия о синерезисе и коагуляции.

Демонстрации

- Периодическая система химических элементов Д. И. Менделеева в различных формах.
- Модель ионной кристаллической решётки на примере хлорида натрия.
- Минералы с ионной кристаллической решёткой: кальцит, галит.
- Модели молекулярной кристаллической решётки на примере «сухого льда» или иода и атомной кристаллической решётки на примере алмаза, графита или кварца.
- Модель молярного объёма газа.
- Модели кристаллических решёток некоторых металлов.
- Коллекции образцов различных дисперсных систем.
- Синерезис и коагуляция.

Лабораторные опыты

- Конструирование модели металлической химической связи.
- Получение коллоидного раствора куриного белка, исследование его свойств с помощью лазерной указки и проведение его денатурации.
- Получение эмульсии растительного масла и наблюдение за её расслоением.

• Получение суспензии известкового молока и наблюдение за её седиментацией.

Химические реакции

Классификация химических реакций. Изомеризация как реакция, протекающая без изменения состава вещества. Аллотропия и её причины. Классификация реакций по различным основаниям: по числу и составу реагентов и продуктов, по тепловому эффекту. Термохимические уравнения реакций. Скорость химических реакций. Факторы, от которых зависит скорость химических реакций: природа реагирующих веществ, температура, площадь соприкосновения реагирующих веществ, их концентрация, наличие катализатора. Понятие о катализе. Ферменты как биологические катализаторы. Ингибиторы реакций и их значение.

Обратимость химических реакций. Химическое равновесие и способы его смещения. Понятие об обратимых реакциях и химическом равновесии. Принцип Ле Шателье и способы смещения химического равновесия. Общая характеристика реакции синтеза аммиака и рассмотрение условий смещения равновесия этой реакции на производстве.

Гидролиз. Обратимый и необратимый гидролиз. Гидролиз солей и его типы. Понятие об энергетическом обмене в клетке и роли гидролиза в нём

Окислительно-восстановительные реакции. Степень окисления и её определение по формулам органических и неорганических веществ.

Окислители и восстановители. Понятие о процессах окисления и восстановления. Составление уравнений химических реакций на основе метода электронного баланса.

Электролиз расплавов и растворов. Практическое применение электролиза. Характеристика электролиза как окислительно-восстанови- тельного процесса. Особенности электролиза, протекающего в растворах электролитов. Получение галогенов, водорода, кислорода, щелочных металлов и щелочей, а также алюминия электролизом расплавов и растворов соединений этих элементов. Понятие о гальванопластике, гальваностегии, рафинировании цветных металлов.

Демонстрации

- Растворение серной кислоты и аммиачной селитры и фиксация тепловых явлений для этих процессов.
- Взаимодействие соляной, серной и уксусной кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и взаимодействие одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой как пример зависимости скорости химической реакции от природы реагирующих веществ.
- Взаимодействие растворов тиосульфата натрия разной концентрации и температуры с раствором серной кислоты.

- Моделирование «кипящего слоя».
- Использование неорганических катализаторов (солей железа, иоди- да калия) и природных объектов, содержащих каталазу (сырое мясо, картофель), для разложения пероксида водорода.
- •Взаимодействие цинка с соляной кислотой и соляной кислоты с нитратом серебра как примеры окислительно-восстановительной реакции и реакции обмена.
- •Конструирование модели электролизёра.
- Видеофрагмент о промышленной установке для получения алюминия.

Лабораторные опыты

- Иллюстрация правила Бертолле на практике: проведение реакций с образованием осадка, газа и воды.
- Гетерогенный катализ на примере разложения пероксида водорода в присутствии диоксида марганца.
- Смещение равновесия в системе Fe $3+ + 3CNS \clubsuit$ Fe(CNS).
- Испытание индикаторами среды растворов солей различных типов.
- Окислительно-восстановительная реакция и реакция обмена на примере взаимодействия растворов сульфата меди(II) с железом и раствором щёлочи.

Практическая работа. Решение экспериментальных задач по теме

«Химическая реакция».

Вещества и их свойства

Металлы. Физические свойства металлов как функция их строения.

Деление металлов на группы в технике. Химические свойства металлов и электрохимический ряд напряжений. Понятие о металлотермии (алюминотермия, магниетермия и др.).

Неметаллы. Неметаллы как окислители. Неметаллы как восстановители. Ряд электроотрицательности.

Неорганические и органические кислоты. Кислоты в свете атомно- молекулярного учения. Кислоты в свете теории электролитической диссоциации. Кислоты в свете протонной теории. Общие химические свойства кислот.

Неорганические и органические основания. Основания в свете атомно-молекулярного учения. Основания в свете теории электролитической диссоциации. Основания в свете протонной теории. Химические свойства органических и неорганических оснований. Неорганические и органические амфотерные соединения. Неорганические амфотерные соединения (оксиды и гидроксиды), их свойства и получение. Амфотерные органические соединения на примере аминокислот. Пептиды и пептидная связь.

Соли. Классификация солей. Жёсткость воды и способы её устранения. Переход карбоната в гидрокарбонат и обратно. Общие химические свойства солей

Демонстрации

- Коллекция металлов.
- Коллекция неметаллов.
- Взаимодействие концентрированной азотной кислоты с медью.
- Вспышка термитной смеси.
- Вспышка чёрного пороха.
- Вытеснение галогенов из их растворов другими галогенами.
- Взаимодействие паров концентрированных растворов соляной кис- лоты и аммиака («дым без огня»).
- Получение аммиака и изучение его свойств.
- Различные случаи взаимодействия растворов солей алюминия со щёлочью.
- Получение жёсткой воды и устранение её жёсткости.

Лабораторные опыты

• Получение нерастворимого гидроксида и его взаимодействие с кислотой.

- •Исследование концентрированных растворов соляной и уксусной кислот капельным методом при их разбавлении водой.
- Получение амфотерного гидроксида и изучение его свойств.
- Проведение качественных реакций по определению состава соли.

Практическая работа. Решение экспериментальных задач по теме

«Вешества и их свойства».

Химия и современное общество

Химическая технология. Производство аммиака и метанола. Понятие о химической технологии. Химические реакции, лежащие в основе производства аммиака и метанола. Общая классификационная харакеристика реакций синтеза в производстве этих продуктов. Научные принципы, лежащие в основе производства аммиака и метанола. Сравнение этих производств. Химическая грамотность как компонент общей культуры человека. Маркировка упаковочных материалов, электроники и бытовой техники, продуктов питания, этикеток по уходу за одеждой.

Демонстрации

- Модель промышленной установки получения серной кислоты.
- Модель колонны синтеза аммиака.
- Видеофрагменты и слайды о степени экологической чистоты товара.

Лабораторные опыты

• Изучение маркировок различных видов промышленных и продовольственных товаров.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Особенности содержания и методического построения курса химии сформированы на основе ФГОС СОО.

- 1. Содержание курса выстроено логично и доступно в соответствии с системно-деятельностным подходом на основе иерархии учебных проблем.
- 2. В 10 классе старшеклассники знакомятся с богатым миром органических веществ, устанавливая взаимосвязь химического строения этих веществ с их свойствами и применением.
- 3. Содержание курса общей химии в 11 классе способствует формированию единой химической картины мира у выпускников средней школы путём рассмотрения общих для неорганической и органической химии понятий, законов и теорий.
- 4. Изучение курса проводится на основе сочетания теории и практики проблемного обучения и подачи материала в логике научного познания.
- 5. Теоретические положения курса широко подкреплены демонстрационными химическими экспериментами, лабораторными опытами и практическими работами.
- 6. Реализуется интеграция содержания курса с предметами не только естественнонаучного, но и гуманитарного цикла.
- 7. Достижению предметных, метапредметных и личностных результатов способствует система заданий в формате рефлексии: проверьте свои знания, примените их, используйте дополнительную информацию, выразите своё мнение.
- 8. Раскрывается роль российских учёных в становлении мировой химической науки, что способствует воспитанию патриотизма и национальной самоидентификации.
- 9. Курс реализует связь учебной дисциплины с жизнью, что способствует усилению мотивации учащихся к изучению непрофильного пред- мета через раскрытие связи изучаемого материала с будущей образовательной траекторией и профессиональной деятельностью.
- 10. В курсе представлены современные направления развития химической науки и технологии.
- 11. В курсе нашли отражение следующие содержательные линии:
- •«Вещество» знания о составе, строении, свойствах (физических, химических и биологических), нахождении в природе и получении важ-

нейших химических веществ;

- •«Химическая реакция» знания о процессах, в которых проявля- ются химические свойства веществ, условиях их протекания и способах управления ими;
- •«Применение веществ» знание взаимосвязи между свойствами веществ, часто используемых в быту, промышленности, сельском хозяйстве, здравоохранении и на транспорте, и их применением;
- •«Язык химии» система знаний о важнейших понятиях химии и химической номенклатуре неорганических и органических веществ

(ИЮПАК и тривиальной); владение химической символикой и её отражением на письме — химическими знаками (символами) при составлении формул и уравнений, а также правилами перевода информации с родного языка на язык химии и обратно.

МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Курс химии в средней школе предусматривается Федеральным государственным образовательным стандартом как составная часть предметной области «Естественно-научные предметы». Обучающиеся могут выбрать для изучения интегрированный курс естествознания или химию как на базовом, так и на углублённом уровне.

Рабочая программа по химии для среднего общего образования на базовом уровне составлена из расчёта 1 ч в неделю (70 ч за два года обучения).

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ

И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ

КУРСА ХИМИИ

Обучение химии в средней школе на базовом уровне по данному курсу способствует достижению обучающимися следующих личностных результатов:

- 1) чувство гордости за российскую химическую науку и осознание российской гражданской идентичности в ценностно-ориентационной сфере;
- 2) осознание необходимости своей познавательной деятельности и умение управлять ею, готовность и способность к самообразованию на протяжении всей жизни; понимание важности непрерывного образования как фактора успешной профессиональной и общественной деятельности в познавательной (когнитивной, интеллектуальной) сфере;

- 3) готовность к осознанному выбору дальнейшей образовательной траектории или сферы профессиональной деятельности в трудовой сфере;
- 4) неприятие вредных привычек (курения, употребления алкоголя и наркотиков) на основе знаний о токсическом и наркотическом действии веществ в сфере здоровьесбережения и безопасного образа жизни.

Метапредметными результатами освоения выпускниками средней школы курса химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системноинформационный анализ, наблюдение, измерение, проведение эксперимента, моделирование, исследовательская деятельность) для изучения различных сторон окружающей действительности;
- 2) владение основными интеллектуальными операциями (формулировка гипотез, анализ и синтез, сравнение и систематизация, обобщение и конкретизация, выявление причинно-следственных связей и поиск аналогов);
- 3) познание объектов окружающего мира от общего через особенное к единичному;
- 4) умение выдвигать идеи и определять средства, необходимые для их реализации;
- 5) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 6) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;
- 7) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 8) готовность и способность к самостоятельной информационно- познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 10) владение языковыми средствами, в том числе и языком химии, умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

Предметными результатами изучения химии на базовом уровне на ступени среднего общего образования являются следующие результаты:

- I. В познавательной сфере:
- 1) знание (понимание) терминов, основных законов и важнейших теорий курса органической и общей химии;
- 2) умение наблюдать, описывать, фиксировать результаты и делать выводы на основе демонстрационных и самостоятельно проведённых экспериментов, используя для этого родной (русский или иной) язык и язык химии;
- 3) умение классифицировать химические элементы, простые вещества, неорганические и органические соединения, химические процессы;
- 4) умение характеризовать общие свойства, получение и применение изученных классов неорганических и органических веществ и их важнейших представителей;
- 5) умение описывать конкретные химические реакции, условия их проведения и управления химическими процессами;
- 6) умение самостоятельно проводить химический эксперимент и наблюдать демонстрационный эксперимент, фиксировать результаты и делать выводы и заключения по результатам;
- 7) умение прогнозировать свойства неизученных веществ по аналогии со свойствами изученных на основе знания химических закономерностей;
- 8) умение определять источники химической информации, получать её, проводить анализ, изготавливать информационный продукт и пред- ставлять его;
- 9) умение пользоваться обязательными справочными материалами (периодической системой химических элементов Д. И. Менделеева, таблицей растворимости, электрохимическим рядом напряжений металлов, рядом электроотрицательности) для характеристики строения, состава и свойств атомов химических элементов I—IV периодов и образованных ими простых и сложных веществ;
- 10) умение устанавливать зависимость свойств и применения важнейших органических соединений от их химического строения, в том числе и обусловленных характером этого строения (предельным или непредельным) и наличием функциональных групп;
- 11) умение моделировать молекулы неорганических и органических веществ;

- 12) понимание химической картины мира как неотъемлемой части целостной научной картины мира.
- II. В ценностно-ориентационной сфере: формирование собственной позиции при оценке последствий для окружающей среды деятельности человека, связанной с производством и переработкой химических продуктов.
- III. В трудовой сфере: проведение химического эксперимента; развитие навыков учебной, проектно-исследовательской и творческой деятельности при выполнении индивидуального проекта по химии.
- IV. В сфере здорового образа жизни: соблюдение правил безопасного обращения с веществами, материалами; оказание первой помощи при отравлениях, ожогах и травмах, полученных в результате нарушения правил техники безопасности при работе с веществами и лабораторным оборудованием.

ОСОБЕННОСТИ СОДЕРЖАНИЯ КУРСА ХИМИИ

БАЗОВОГО УРОВНЯ

На освоение курса химии на базовом уровне отведено жёстко лимитированное учебное время.

Содержание курса характеризуется целостностью и системностью.

Первая часть курса (10 класс) посвящена органическим соединениям, а вторая (11 класс) — общей химии.

Структурирование курса органической химии определяется идеями теории развивающего обучения Д. Б. Эльконина и В. В. Давыдова и ставит целью развитие учащихся непрофильных по отношению к химии классов средствами учебной дисциплины. В связи с этим вначале рассматриваются краткие теоретические сведения о строении органических соединений, раскрываются причины их многообразия. Далее рассматриваются основные классы углеводородов (алканов, алкенов, диенов, алкинов, аренов) и их природные источники (природный газ, нефть и каменный уголь). Это позволяет закрепить основные положения теории химического строения органических соединений.

Представления о зависимости свойств органических соединений от их строения развиваются при рассмотрении классов кислородсодержащих соединений (спиртов, альдегидов, карбоновых кислот, сложных эфиров, жиров и углеводов) и азотсодержащих органических соединений (аминов, аминокислот, белков и нуклеиновых кислот).

Роль органической химии в жизни современного общества раскрыта в заключительной главе курса «Органическая химия и общество». В ней обучающиеся знакомятся с такими важными в практическом и биологическом отношении веществами и материалами, как пластмассы и волокна, а также с достижениями биотехнологии.

Идеи теории развивающего обучения положены и в основу курса общей химии. У старшеклассников формируется целостное представление о

химической науке и химическом производстве, а также о единой естественно-научной картине мира, неотъемлемой частью которой является химическая картина мира.

В курсе общей химии вначале учащиеся знакомятся с последними достижениями в области изучения атома, узнают о современных методах познания строения атома, углубляют и расширяют знания, полученные в курсе основной школы, о строении атома и вещества на основе периодического закона и периодической системы Д. И. Менделеева. Далее рассматривается классификация химических реакций в органической и неорганической химии, общие свойства металлов и неметаллов, а также классов органических и неорганических соединений (кислот, оснований, амфотерных соединений) в свете теории электролитической диссоциации и протонной теории. Завершает курс знакомство старшеклассников с перспективами развития химической науки и химического производства, с проблемой охраны окружающей среды от химического загрязнения и путями её решения.

Учебно-тематический план

№	Тема. Раздел	Общее Количество часов	Теория	Практика	Контроль
1	Повторение основных вопросов курса 10 класса	2	1	1	Стартовая к/р
2	Строение вещества	9	9		Контрольная работа
3	Химическиереакции	8	8		Промежуточнаяк/р
4	Вещества и их свойства.	11	11		Итоговая к/р»
5	Химия и современное общество	4		4	
6	ИТОГО	34 часа.	29	5	

Календарное планирование 11 класс

№	Раздел. Тема.	дата	Оборудование «Точка роста»
урока			
	Раздел 1.Повторение основных вопросов курса 10 класс (2 часа)		
1	Повторение основных понятий 10 класса		
2	Стартовая контрольная работа		
	Раздел 2. Строение вещества (9 часов)		
3	Современные представления о строении атома.		
4	Периодический закон и Периодическая система химических элементов Д.И. Менделеева в свете теории строения атома. Становление и развитие ПЗ и ТХС.		
5	Ионная химическая связь, ионные кристаллические решетки.		
6	Ковалентная связь. Водородная связь		
7	Металлическая связь. Единая природа химических связей.		
8	Полимеры		
9	Дисперсные системы		
10	Систематизация знаний по теме «Строение вещества»		
11	Контрольная работа		
	Раздел 3. Химические реакции (8 часов)		
12	Классификация химических реакций		
13	Скорость химической реакции.		«Экспериментальное определение порядка скорости химической реакции» «Определение температурного коэффициента скорости реак-

		ции (коэффициента Вант-Гоффа) и энергии активации
14	Обратимость химических реакций. Химическое равновесие.	
15	Гидролиз	
16	Окислительно -восстановительные реакции	
17	Электролиз расплавов и растворов электролитов.	
18	Практическая работа №1 «Решение экспериментальных задач по теме «Химическая реакция»	
19	Промежуточная контрольная работа	
	Раздел 4. Вещества и их свойства (11 ча- сов)	
20	Металлы	
21	Металлы	
22	Неметаллы	
23	Неорганические кислоты	
24	Органические кислоты	
25	Неорганические и органические основания	
26	Амфотерные соединения	
27	Соли	
28	Практическая работа №2 « Решение экспериментальных задач по теме « Вещества и их свойства»	
29	Систематизация знаний по теме «Вещества и их свойства»	
30	Итоговая контрольная работа	
	Раздел 5 Химия и современное общество (4 часа)	
31	Современные технологии. Производство аммиака и метанола.	

32	Химическая грамотность как компонент общей культуры человека	
33	Классификация неорганических веществ	
34	Классификация органических веществ (по строению углеродной цепи)	
ИТОГО	34 часа	

Согласовано Зам. директора по УВР МБОУ СОШ №3 с. Астраханка Т.В. Сомлякова

<u>«____»____2021</u> г.